Criar uma Loja Virtual Grátis
Translate this Page

Rating: 4.0/5 (11 votos)




ONLINE
1




Partilhe esta Página



PLANETBANG participe da enquete e assista espero que goste mande sua mensagem pra gente


astronomia
astronomia

O universo

 

O conhecimento adquirido alimenta as respostas a algumas das indagações básicas do espírito humano: Como surgiu e se desenvolve este imenso teatro, no qual a matéria e a energia produzem espetáculos fantásticos, em contínua transformação? Estamos em São José dos Campos, uma cidade do planeta Terra, onde os astrônomos do INPE, iguais a muitos em outros lugares, estão investigando os segredos do Universo. Fazem isso pela satisfação que o conhecimento produz. Mais profundamente, o fazem para ampliar os horizontes do nosso próprio mundo. Este caderno reúne os tópicos abordados no Curso de Introdução à Astronomia e Astrofísica do INPE, iniciado em 1998 e programado para ocorrer anualmente ao final do primeiro semestre. É destinado principalmente à atualização de professores do ensino fundamental e médio, e a estudantes universitários vinculados a áreas relacionadas à astronomia. O curso pretende traçar as linhas básicas do que a astronomia já conseguiu decifrar, delineando também um quadro da evolução das idéias e das técnicas utilizadas na pesquisa científica. Paralelamente, são mostrados os trabalhos que a Divisão de Astrofísica do INPE vem desenvolvendo. Há ainda o propósito de apresentar uma visão desmistificada da ciência e do cientista, expondo as suas tentativas e incertezas no caminho do conhecimento. Finalizando, a última parte do curso enfoca a importância da ciência básica, como principal geradora de novas idéias e tecnologias. Alguns subprodutos esperados são despertar uma possível vocação científica nos estudantes e motivar os educadores a introduzir novas formas de comunicar a ciência a seus alunos. Para que os objetivos propostos sejam cumpridos satisfatoriamente, este trabalho deve ser constantemente revisado e, nesse sentido, todas as críticas e sugestões serão bem vindas

 

NASCIMENTO DA ASTRONOMIA 

Na época atual, é cada vez mais difícil admirar um céu noturno escuro e estrelado, principalmente para quem vive num centro urbano. A poluição luminosa da cidade ofusca o brilho da maioria dos astros. Além do mais, quem consegue reservar um intervalo de tempo para essa tarefa tendo que cumprir tantos compromissos profissionais, familiares e pessoais

 

ANO SOLAR E LUNAÇÃO

 

A observação sistemática do deslocamento do Sol no céu permitiu ao homem perceber dois fatos notáveis: (i) tanto o nascer do Sol como o pôr do Sol não ocorrem diariamente nos mesmos pontos do círculo do horizonte, (ii) a duração desse deslocamento é diferente dia após dia. O mais incrível foi notar que esses fatos ocorrem de forma cíclica, cujo período é denominado de ano solar ou trópico. O ano solar tem 365,2422 dias (365 dias, 5 horas, 48 minutos e 46,08 segundos). A observação persistente da mudança do aspecto da Lua fez notar que o intervalo de tempo entre duas fases iguais e consecutivas corresponde a 29,53059 dias. Esse período lunar é denominado de lunação (ou período sinódico da Lua). O conceito de mês surgiu desse fato astronômico. Muitas sociedades antigas utilizaram e algumas ainda adotam o ano lunar, que possui 12 meses lunares, ou seja, 354,36708 dias (354 dias, 8 h, 48 min e 35,71 s). Os povos árabes do oriente médio usam um calendário baseado no mês lunar. Já os judeus utilizam um calendário lunissolar. O mundo ocidental contemporâneo usa um calendário solar que sofreu influência do calendário lunar, isto é, adotamos um ano com 12 meses, originários das 12 lunações

 

HISTÓRIA DOS CALENDÁRIOS OCIDENTAIS 

Os primeiros calendários da Roma Antiga (750 a.C. - 476 d.C.) eram caracterizados a bel prazer pelos próprios imperadores vigentes, baseados inclusive em superstições. O calendário do imperador Rômulo (753-717 a.C.) apresentava 304 dias com 10 meses de duração variável e o calendário de Numa Pompéia (717-673 a.C.) possuía 355 dias divididos basicamente em 12 ou 13 meses (de 29 ou 31 dias). O calendário de Pompéia aplicava uma correção ao ano solar de modo mais satisfatório do que o de Rômulo, porém era ainda muito complicado. Os nomes dos meses adotados por nós são originários desses calendários romanos. O imperador Júlio César (100-44 a.C.) decidiu adotar um calendário solar com 365 dias dispostos em 12 meses, de modo que a cada quatro anos o ano teria 366 dias. O primeiro mês do calendário juliano passou a ser Januário e o dia excedente era acrescentado ao mês Februarius dando origem ao nosso ano bissexto. Por curiosidade, o nome do sétimo mês do nosso calendário, Julho, vem de uma homenagem a esse imperador romano após sua morte. A palavra calendário

provém da nomenclatura latina usada pelos antigos romanos para a designação da primeira parte de um mês: ka lenda e. As outras duas partes de um mês eram denominadas de nonas e dias. Apesar de todos os ajustes efetuados na Roma Antiga, o ano juliano tinha em média 365,25 dias (ou 365 dias e 6 horas), sendo ligeiramente diferente do ano solar. A correção referente aos anos bissextos a cada quatro anos não foi suficiente. Ao longo de muitos anos, a diferença tornava-se cada vez maior, acrescentando um dia extra a cada intervalo de 128 anos, aproximadamente. Somente em 1582, o papa Gregório XIII (1512-1586) estabeleceu uma reforma crucial ao calendário ocidental. Assim foi a reforma gregoriana: (i) suprimiu 10 dias acumulados, para que o início de cada estação ocorresse na época certa; (aí) eliminou a ocorrência de anos bissextos durante três anos seculares para cada período de 400 anos, de modo que o ano 1600 foi bissexto, os anos 1700, 1800 e 1900 não o foram, 2000 foi bissexto, 2100 não o será e assim sucessivamente (somente os anos seculares divisíveis por 400 são bissextos); (lei) a contagem dos dias do mês passou a ser caracterizada por números cardinais (1, 2, 3, ..., 31) e não mais pela ordenação de ka lenda e, nonas e dias. No entanto, ainda assim, resta uma diferença residual entre o ano solar e o ano gregoriano, que causa o acréscimo de um dia para cada período de 3.333,3333... anos. Desta maneira, o ano 4000 não deverá ser bissexto. Alguém poderia propor mais uma reforma ao nosso calendário, fazendo um ano composto por 13 meses de 28 dias, porém isto é bem improvável

Um modo de entender o calendário ocidental atual (gregoriano modificado) é expressar a duração do ano solar por uma soma de dias inteiros e fracionários. 365,2422 dias ≅ 365 + 1/4 – 1/100 + 1/400 – 1/3.300 dias O termo à esquerda da quase-igualdade representa a duração do ano solar. O lado direito é composto por cinco termos: 

(a) o primeiro é a duração do ano padrão

 

b) a adição da fração 1/4 corresponde à soma de um dia a cada quatro anos (os anos bissextos, que ocorrem em anos divisíveis por 4); 

(c) a subtração de 1/100 mostra a necessidade de não incluir um dia a cada 100 anos; 

(d) a adição de 1/400 indica a necessidade da ocorrência de um ano bissexto a cada 400 anos; 

(e) a última fração à direita diz que se deve suprimir a inclusão de um dia a cada 3.300 anos, aproximadamente. 

De acordo com os itens (c) e (d), o ano 2000 foi bissexto, mas os anos 2100, 2200 e 2300 não o serão.

 

ORIGEM DA SEMANA

 

O vocábulo semana provém do latim septmana, que significa sete manhãs (usado na Roma Antiga). O conceito de semana de 7 dias originou-se da duração de cada período lunar marcante ou do culto diário aos sete astros errantes pelos babilônios. O domingo era dedicado ao Sol, segunda-feira à Lua, terça a Marte, quarta a Mercúrio, quinta a Júpiter, sexta a Vênus e sábado a Saturno. As nomeações dos dias da semana em várias línguas modernas (ex. espanhol, francês, inglês e alemão) originaram-se dos nomes em latim desses astros (Solis, Lunae, Martis, Mercurie, Jovis, Veneris e Saturni respectivamente). A língua portuguesa não seguiu essa denominação para os dias da semana porque sofreu influência do cristianismo. As comemorações da Páscoa Cristã originalmente duravam uma semana de orações. Os dias da Páscoa eram denominados feriaes em latim, significando feriados. O domingo era nomeado por feria-prima, a segunda-feira era feria-segunda e assim por diante. O sábado vem do vocábulo latino Shabbath, que correspondia ao dia de descanso dos hebreus. A denominação domingo usada pelos povos latinos origina-se da substituição de feria-prima (ou dies Solis) por dominica imposta pelo imperador Flávio Constantino (Roma antiga, 280-337 d.C.), a qual significa dia do Senhor, quando da sua conversão ao cristianismo

 

 

 

ESFERICIDADE E MOBILIDADE DA TERRA

 

A idéia de imobilidade da Terra perdurou por muito tempo, até por volta do Renascimento Europeu, com a primeira revolução científica liderada por Nicolau Copérnico (1473-1543), Galileu Galilei (1564-1642) e Isaac Newton (1642-1727). O conceito de esfericidade para o nosso planeta não era totalmente aceito nessa época, embora Aristóteles (600 a.C.) já o tivesse proposto, ao observar eclipses da Lua (a sombra da Terra era sempre circular quando projetada na Lua), e Eratóstenes (240 a.C.) já tivesse calculado o raio terrestre. Com as grandes viagens de circunavegação, todos tiveram que aceitar tais idéias. Eratóstenes notou que o Sol não ficava a uma mesma altura no céu, simultaneamente em duas cidades do Egito Antigo (Alexandria e Siena, atual Assuan), situadas aproximadamente no mesmo meridiano terrestre. Ele observou que ao meio-dia de um solstício de verão, enquanto o Sol iluminava o fundo de um poço artesiano em Siena, um gnômon projetava uma pequena sombra em Alexandria, como é mostrado na Figura 1.1. Bastaria, então, conhecer a distância entre as duas cidades e o ângulo de separação entre elas em relação ao centro da Terra. Este ângulo corresponde àquele formado pelo gnômon e o raio de luz vindo do Sol, cujo vértice é a própria extremidade superior do gnômon. Admitindo-se uma distância de 5.000 stadias (unidade de comprimento da época; 1 stadia ≅ 185 m), a estimativa de Eratóstenes para o diâmetro polar da Terra foi de 14.715 km, muito próximo do valor moderno de 12.718 km. É fácil compreender a idéia de imobilidade da Terra, seja ela esférica ou não. Do ponto vista de uma pessoa sobre qualquer ponto da superfície terrestre exceto os pólos, observa-se que tanto o Sol como a maioria dos outros astros surgem no horizonte leste, elevam-se no céu e vão se esconder na parte oeste. Parece, então, que todo o céu está girando em torno de nós. Além do mais, quando jogamos qualquer objeto verticalmente para cima, ele sempre cai em queda livre no mesmo lugar de onde saiu (se não estiver ventando no momento); dando a impressão de que a Terra como um todo não se move como era concebido pela Física Aristotélica admitida até a revolução científica do Renascimento Europeu. Contudo, segundo a Física Newtoniana, o mesmo pode-se afirmar quando repetimos essa experiência dentro de um veículo em movimento retilíneo e uniforme, que em primeira aproximação pode representar o efeito do movimento de rotação da Terra num dado ponto de sua superfície. Foi notório o debate científico entre as idéias revolucionárias de Galileu e o paradigma científico daquela época, transformado em dogma pela Igreja Cristã. As leis de movimento elaboradas por Newton sustentaram a aceitação das idéias de Galileu: a Terra não está imóvel no centro do Universo, mas sim, gira em torno de si mesma e translada ao redor do Sol. A rotação da Terra foi comprovada por medição direta não astronômica, em 1851, através do experimento do pêndulo de Léon Foucault (físico francês). Ele verificou que ao abandonar um pêndulo à ação da gravidade, o plano de oscilação do mesmo gira em torno da vertical do lugar. INCLINAÇÃO DO EIXO DE ROTAÇÃO DA TERRA O ângulo formado entre o eixo de rotação da Terra e a perpendicular da eclíptica é, exatamente, igual à separação angular entre o plano do equador da Terra e o plano da órbita terrestre (eclíptica). A Figura 1.7 ilustra essa inclinação do eixo de rotação da Terra. Na época atual, a inclinação entre o plano do equador e o da eclíptica é de aproximadamente 23°,5 (exatamente 23° 27’ 08’’). Se, por acaso, a inclinação fosse 0°, ou seja, a Terra girasse com o seu eixo perpendicularmente ao plano da eclíptica, todos os “dias claros” e noites teriam sempre a mesma duração (12 h); seria um eterno equinócio (os planos da eclíptica e do equador coincidiriam) e não existiriam as estações do ano. A inclinação do eixo da Terra muda com o tempo, porque esta se movimenta semelhante a um pião que gira obliquamente ao chão. Um dos movimentos, denominado precessão dos equinócios, faz o eixo da Terra girar em torno da perpendicular da eclíptica com um período de cerca de 25.800 anos. Outro movimento, chamado nutação, faz o ângulo dessa inclinação oscilar em torno de um valor médio. Ambos os movimentos são determinados pela interação gravitacional da Lua, Sol e planetas sobre a Terra, em função desta não ser uma esfera perfeita. O movimento de precessão produziria uma modificação lenta e gradual nas datas dos solstícios e equinócios, antecipando-as, caso a correção correspondente não fosse aplicada ao sistema de coordenadas celestes equatoriais.A astronomia é uma das mais antigas ciências. Culturas pré-históricas deixaram registrados vários artefatos astronômicos, como Stonehenge, os montes de Newgrange, os menires. As primeiras civilizações, como os babilônios, gregos, chineses, indianos, iranianos e maias realizaram observações metódicas do céu noturno. No entanto, a invenção do telescópio permitiu o desenvolvimento da astronomia moderna. Historicamente, a astronomia incluiu disciplinas tão diversas como astrometria, navegação astronômica, astronomia observacional e a elaboração de calendários.A Astronomia é uma ciência natural que estuda corpos celestes (como estrelas, planetas, cometas, nebulosas, aglomerados de estrelas, galáxias) e fenômenos que se originam fora da atmosfera da Terra (como a radiação cósmica de fundo em micro-ondas). Ela está preocupada com a evoluçãA astronomia infravermelha lida com a detecção e análise da radiação infravermelha (comprimentos de onda maiores que a luz vermelha). Exceto por comprimentos de onda mais próximas à luz visível, a radiação infravermelha é na maior parte absorvida pela atmosfera, e a atmosfera produz emissão infravermelha numa quantidade significante. Consequentemente, observatórios de infravermelho precisam estar localizados em lugares altos e secos, ou no espaço.

O espectro infravermelho é útil para estudar objetos que são muito frios para emitir luz visível, como os planetas e discos circunstrelares. Comprimentos de onda infravermelha maior podem também penetrar nuvens de poeira que bloqueiam a luz visível, permitindo a observação de estrelas jovens em nuvens moleculares e o centro de galáxias.[6] Algumas moléculas radiam fortemente no infravermelho, e isso pode ser usado para estudar a química no espaço, assim como detectar água em cometas.[7]
Astronomia ópticaEditar
Ver artigo principal: Astronomia óptica
Historicamente, a astronomia óptica (também chamada de astronomia da luz visível) é a forma mais antiga da astronomia.[8] Imagens ópticas eram originalmente desenhadas à mão. No final do século XIX e na maior parte do século XX as imagens eram criadas usando equipamentos fotográficos. Imagens modernas são criadas usando detectores digitais, principalmente detectores usando dispositivos de cargas acoplados (CCDs). Apesar da luz visível estender de aproximadamente 4000 Å até 7000 Å (400 nm até 700 nm),[8] o mesmo equipamento usado nesse comprimento de onda é também usado para observar radição de luz visível próxima a ultravioleta e infravermelho.
Astronomia ultravioletaEditar
Ver artigo principal: Astronomia ultravioleta
A astronomia ultravioleta é normalmente usada para se referir a observações no comprimento de onda ultravioleta, aproximadamente entre 100 e 3200 Å (10 e 320 nm).[4] A luz nesse comprimento de onda é absorvida pela atmosfera da Terra, então as observações devem ser feitas na atmosfera superior ou no espaço.
A astronomia ultravioleta é mais utilizada para o estudo da radiação térmica e linhas de emissão espectral de estrelas azul quente (Estrela OB) que são muito brilhantes nessa banda de onda. Isso inclui estrelas azuis em outras galáxias, que têm sido alvos de várias pesquisas nesta área. Outros objetos normalmente observados incluem a nebulosa planetária, remanescente de supernova, e núcleos de galáxias ativas.[4] Entretanto, a luz ultravioleta é facilmente absorvida pela poeira interestelar, e as medições da luz ultravioleta desses objetos precisam ser corrigidas.[4]
Astronomia de raios-XEditar
Ver artigo principal: Astronomia de raios-X
A astronomia de raio-X é o estudo de objetos astronômicos no comprimento de onda de raio-X. Normalmente os objetos emitem radiação de raio-X como radiação síncrotron (produzida pela oscilação de elétrons em volta de campos magnéticos), emissão termal de gases finos (chamada de radiação Bremsstrahlung) maiores que 107 kelvin, e emissão termal de gases grossos (chamada radiação de corpo negro) maiores que 107 kelvin.[4] Como os raio-X são absorvidos pela atmosfera terrestre todas as observações devem ser feitas de balões de grande altitude, foguetes, ou naves espaciais.
Fontes de raio-X notáveis incluem binário de raio X, pulsares, remanescentes de supernovas, galáxias elípticas, aglomerados de galáxias e núcleos galácticos ativos.[4]
Astronomia de raios gamaEditar
Ver artigo principal: Astronomia de raios gama
A astronomia de raios gama é o estudo de objetos astronômicos que usam os menores comprimentos de onda do espectro eletromagnético. Os raios gama podem ser observados diretamente por satélites como o observatório de raios Gama Compton ou por telescópios especializados chamados Cherenkov.[4] Os telescópios Cherenkov não detectam os raios gama diretamente mas detectam flasses de luz visível produzidos quando os raios gama são absorvidos pela atmosfera da Terra.[9]
A maioria das fontes emissoras de raio gama são na verdade Erupções de raios gama, objetos que produzem radiação gama apenas por poucos milisegundos a até milhares de segundos antes de desaparecerem. Apenas 10% das fontes de raio gama são fontes não-transendentes, incluindo pulsares, estrelas de nêutrons, e candidatos a buracos negros como núcleos galácticos ativos.[4]
Campos não baseados no espectro eletromagnéticoEditar
Além da radiação eletromagnética outras coisas podem ser observadas da Terra que se originam de grandes distâncias.
Na Astronomia de neutrinos, astrônomos usam laboratórios especiais subterrâneos como o SAGE, GALLEX e Kamioka II/III para detectar neutrinos. Esses neutrinos se originam principalmente do Sol, mas também de supernovas.[4]
Raios cósmicos consistindo de partículas de energia muito elevada podem ser observadas chocando-se com a atmosfera da terra.[carece de fontes] No futuro, detectores de neutrino poderão ser sensíveis aos neutrinos produzidos quando raios cósmicos atingem a atmosfera da Terra.[4]
Foram construídos alguns observatórios de ondas gravitacionais como o Laser Interferometer Gravitational Observatory (LIGO) mas as ondas gravitacionais são extremamente difíceis de detectar.[10]
A astronomia planetária tem se beneficiado da observação direta pelos foguetes espaciais e amostras no retorno das missões. Essas missões incluem fly-by missions com sensores remotos; veículos de aterrissagem que podem realizar experimentos no material da superfície; missões que permitem ver remotamente material enterrado; e missões de amostra que permitem um exame laboratorial direto.
Astrometria e mecânica celestialEditar
Um dos campos mais antigos da astronomia e de todas as ciências, é a medição da posição dos objetos celestiais. Historicamente, o conhecimento preciso da posição do Sol, Lua, planetas e estrelas era essencial para a navegação celestial.
A cuidadosa medição da posição dos planetas levou a um sólido entendimento das perturbações gravitacionais, e a capacidade de determinar as posições passadas e futuras dos planetas com uma grande precisão, um campo conhecido como mecânica celestial. Mais recentemente, o monitoramento de Objectos Próximos da Terra vai permitir a predição de encontros próximos, e possivelmente colisões, com a Terra.[11]CategoriasEditar
Além dos telescópios ópticos convencionais, que são constituídos basicamente por uma objectiva e uma ocular, existe uma gama de aparelhos que captam a radiação electromagnética fora da faixa do visível, isto é, ao longo de diferentes regiões do espectro electromagnético.
Telescópios para radiação infravermelha e raios-X tornaram-se comuns no final do século XX com o desenvolvimento de sensores digitais que pudessem ser arrefecidos a temperaturas muito baixas. Para a captação astronómica de micro-onda e radiofrequência, existem os chamados radiotelescópios.
Os telescópios contemporâneos podem operar isoladamente ou em conjunto para compor ou combinar as imagens obtidas, aumentando assim o poder de resolução.
Nos instrumentos ópticos profissionais, além da ampliação da imagem, é possível captar as radiações electromagnéticas e separá-las em diferentes comprimentos de onda, processo denominado espectrografia, ou espectroscopia. Isso permite entender a composição e história dos astros em estudo.
As técnicas actuais de construção de telescópios utilizam materiais mais leves e resistentes, aumentando assim sua qualidade, resolução e fiabilidade. Exemplo claro são as observações e recolha de imagens pelo Telescópio Espacial Hubble, que nos mostram um Universo mais longínquo e mais belo do que o esperado.
A óptica geométrica dos instrumentos permite captar (e focalizar) a radiação electromagnética aumentando o tamanho angular aparente dos objectos, assim como o seu brilho aparente.
Os telescópios usados fora do contexto da Astronomia são referidos como teodolito, monóculo, binóculos, ou objectiva.
A palavra "telescópio" refere-se geralmente aos ópticos, embora existam instrumentos para a quase totalidade do espectro electromagnético da radiação electromagnética.
RadiotelescopiaEditar
Os radiotelescópios são sistemas de recepção onde existe um receptor de ondas eletromagnéticas do espectro de radiofrequência, ou radioreceptor, uma linha de transmissão que pode ser uma guia de onda dependendo da frequência observada, antenas de rádio dirigidas ou direcionais.
As antenas podem ser com refletores parabólicos ou planos de grandes dimensões, em caracol, em sistema Yagi-Uda ou suas variantes, Também são muito utilizados sistemas de recepção helicoidais, entre outros tipos.
As montagens das antenas de radiotelescópios podem ser simples no caso de uma antena ou em baterias, quando se usam muitas antenas com a finalidade de aumentar o ganho, a área de observação ou para executar a triangulação dos sinais recebidos para determinar a distância do objeto estelar observado.
No caso de antena parabólica, esta é por vezes construída como uma estrutura de fio condutor cujos intervalos são menores que um comprimento de onda daquele irradiado pelo objeto pesquisado.
Os radiotelescópios são por vezes operados aos pares, ou em grandes grupos, para sintetizar uma cobertura "virtual", idêntica em tamanho à distância entre telescópios (ver síntese de cobertura), além do uso em triangulação para determinar distância do objeto observado. O recorde actual encontra-se próximo à largura da Terra. Actualmente também se aplica esta técnica aos instrumentos ópticos.
Os telescópios de raios-x e de raios gama têm um problema, já que estes raios atravessam metal e vidro. Superfícies coletoras feitas de metal pesado e em forma de anéis concêntricos são utilizadas para focalizar a radiação proveniente do espaço profundo. As superfícies desses espelhos apresentam a forma de hiperbolóides de revolução.
HistóriaEditar
Costuma-se dizer que Hans Lippershey, um fabricante de lentes neerlandês,construiu em 1608 o primeiro instrumento para a observação de objetos à distância: o telescópio. O conceito que desenvolveu era a utilização desse tubo com lentes para fins bélicos e não para observações do céu.
A notícia da construção do tubo com lentes por Lippershey espalhou-se rapidamente e chegou até o astrónomo italiano Galileu Galilei, que, em 1609, apresentou várias versões do aparelho feitas por ele mesmo a partir de experimentações e polimento de vidro. Galileu logo apontou o telescópio para o céu noturno, sendo considerado o primeiro homem a usar o telescópio para investigações astronómicas. O telescópio de Galileu também é conhecido por luneta.
Galileu, utilizando seu instrumento óptico, descobriu diversos fenômenos celestes, entre os quais as manchas solares, as crateras e o relevo lunar, as fases de Vênus, os principais satélites de Júpiter, e a natureza da Via Láctea como a concentração de incontáveis estrelas, iniciando assim uma nova fase da observação astronômica na qual o telescópio passou a ser o principal instrumento, relegando ao esquecimento os melhores instrumentos astronômicos da antiguidade (astrolábios, quadrantes, sextantes, esferas armilares, etc.). As descobertas de Galileu forneceram evidências muito fortes aos defensores do sistema heliocêntrico de Copérnico.
Pouco tempo depois de Galileu, Johannes Kepler descrevia a óptica das lentes (ver "Astronomiae Pars Optica" e "Dioptrice"), incluindo um novo tipo de telescópio astronómico com duas lentes convexas (um princípio muitas vezes referido como telescópio de Kepler).
Tipos de telescópioEditar
Ver artigo principal: 
Tipos de telescópios
Há vários tipos de telescópios: azimutais, ópticos, raio-x, raios gama e de radiação infravermelha. Um tipo simples de telescópio é o de montagem altazimute chamada também de montagem azimutal. É idêntico aos usados na supervisão de trânsito. Uma forquilha opera no plano horizontal (azimute, e marcas na forquilha permitem ao telescópio variar em altitude (plano vertical).
O maior problema de um telescópio de altazimute na astronomia é que ambos os eixos têm que ser continuamente ajustados para compensar a rotação da Terra. Ainda que este processo seja controlado por computador, a imagem roda a uma velocidade variável, dependendo do ângulo da estrela desde o polo celestial. Este último efeito torna um telescópio de altazimute pouco prático para fotografia de longa exposição com telescópios pequenos, pois causa algumas aberrações na imagem fotografada.
A solução preferencial para telescópios astronómicos é adaptar este tipo de montagem (altazimute) de maneira que o eixo de azimute fique paralelo com o eixo de rotação da Terra; isto é designado como montagem equatorial.
Os grandes telescópios recentemente construídos usam uma montagem em altazimute controlada por computador, e, para exposições prolongadas, dispõem de primas de rotação de velocidade variável na objectiva.
Existem montagens ainda mais simples que a de altazimute, usadas geralmente em instrumentos especializados. Alguns são o trânsito meridiano (apenas altitude) e espelho de plano amovível de largura constante para observação solar.tOs telescópios da actual geração em construção comportam um espelho primário entre 6 e 8 metros de diâmetro (para telescópios terrestres). Nesta geração, o espelho é tipicamente muito fino, e mantido em óptima forma por um grupo de actuadores (ver óptica activa). Esta tecnologia levou a uma remodelação na concepção dos telescópios do futuro, com diâmetros de 30, 50 e mesmo 100 metros.
Inicialmente o detector utilizado nos telescópios era o olho humano. Posteriormente, a placa fotográfica sintetizada tomou-lhe o lugar, e o espectrógrafo foi introduzido, o que possibilitou a captação de informação espectral. Depois da placa fotográfica, sucessivas gerações de detectores electrónicos, como os CCDs, têm sido aperfeiçoadas, cada vez com maior sensibilidade e resolução.
Os telescópios de investigação actuais dispõem de vários instrumentos: cameras, de diferentes respostas; espectrógrafos, úteis nas diferentes regiões do espectro; polarímetros, que detectam luz, etc.
Nos últimos anos, foram desenvolvidas algumas tecnologias para superar o efeito da atmosfera da Terra em telescópios terrestres, com resultados promissores. Ver espelho tip-tilt e óptica adaptativa.
O fenómeno da difracção óptica estabelece um limite para a resolução e qualidade de imagem atingível por um telescópio, o que consiste na área efectiva do disco Airy, que limita a proximidade com que se podem instalar dois desses discos. Este limite absoluto é designado de limite de resolução de Sparrow, e depende do comprimento de onda da luz em observação (uma vez que o limite da luz vermelha é atingido mais rapidamente que o da luz azul) e no diâmetro do espelho do telescópio. Por tudo isto, um telescópio dotado de um determinado diâmetro pode resolver apenas até um determinado limite num determinado comprimento de onda, de maneira que, para se obter mais resolução no mesmo comprimento de onda, será necessário um espelho maior
A medição do paralaxe estelar de estrelas próximas provêm uma linha de base fundamental para a medição de distâncias na astronomia que é usada para medir a escala do universo. Medições paralaxe de estrelas próximas provêm uma linha de base absoluta para as propriedades de estrelas mais distantes, porque suas propriedades podem ser comparadas. A medição da velocidade radia e o movimento próprio mostra a cinemática desses sistemas através da Via Láctea. Resultados astronômicos também são usados para medir a distribuição de matéria escura na galáxia.[12]
Durante a década de 1990, as técnicas de astrometria para medir as stellar wobble foram usados para detectar planetas extrasolares orbitando a estrelas próximas.[13]o, a física, a química e o movimento de objetos celestes, bem como a formação e o desenvolvimento do universoHistóriaEditar
Ver artigo principal: História da astronomia
Inicialmente, a astronomia envolveu somente a observação e a previsão dos movimentos dos objetos no céu que podiam ser vistos a olho nu. O Rigveda refere-se aos 27 asterismos ou nakshatras associados aos movimentos do Sol e também às 12 divisões zodiacais do céu. Os antigos gregos fizeram importantes contribuições para a astronomia, entre elas a definição de magnitude aparente. A Bíblia contém um número de afirmações sobre a posição da Terra no universo e sobre a natureza das estrelas e dos planetas, a maioria das quais são poéticas e não devem ser interpretadas literalmente; ver Cosmologia bíblica. Nos anos 500, Aryabhata apresentou um sistema matemático que considerava que a Terra rodava em torno do seu eixo e que os planetas se deslocavam em relação ao Sol.
Astronomia estelar, evolução estelar: A nebulosa planetária de Formiga. A ejecção de gás da estrela moribunda no centro tem padrões simétricos intrigantes diferentes dos padrões caóticos esperados de uma explosão ordinária. Cientistas usando o Hubble tentam entender como uma estrela esférica pode produzir tais simetrias proeminentes no gás que ejecta.
O estudo da astronomia quase parou durante a Idade Média, à exceção do trabalho dos astrónomos árabes. No final do século IX, o astrónomo árabe al-Farghani (Abu'l-Abbas Ahmad ibn Muhammad ibn Kathir al-Farghani) escreveu extensivamente sobre o movimento dos corpos celestes. No século XII, os seus trabalhos foram traduzidos para o latim, e diz-se que Dante aprendeu astronomia pelos livros de al-Farghani.
No final do Século X, um observatório enorme foi construído perto de Teerã, Irã, pelo astrônomo al-Khujandi, que observou uma série de trânsitos meridianos do Sol, que permitiu-lhe calcular a obliquidade da eclíptica, também conhecida como a inclinação do eixo da Terra relativamente ao Sol. Como sabe-se hoje, a inclinação da Terra é de aproximadamente 23°34', e al-Khujandi mediu-a como sendo 23°32'19". Usando esta informação, compilou também uma lista das latitudes e das longitudes de cidades principais.
Omar Khayyam (Ghiyath al-Din Abu'l-Fath Umar ibn Ibrahim al-Nisaburi al-Khayyami) foi um grande cientista, filósofo e poeta persa que viveu de 1048 a 1131. Compilou muitas tabelas astronômicas e executou uma reforma do calendário que era mais exato do que o Calendário Juliano e se aproximava do Calendário Gregoriano. Um feito surpreendente era seu cálculo do ano como tendo 365,24219858156 dias, valor esse considerando a exatidão até a sexta casa decimal se comparado com os números de hoje, indica que nesses 1000 anos pode ter havido algumas alterações na órbita terrestre.
Durante o Renascimento, Copérnico propôs um modelo heliocêntrico do Sistema Solar. No século XIII, o imperador Hulagu, neto de Gengis Khan e um protetor das ciências, havia concedido ao conselheiro Nasir El Din Tusi autorização para edificar um observatório considerado sem equivalentes na época. Entre os trabalhos desenvolvidos no observatório de Maragheg e a obra "De Revolutionibus Orbium Caelestium" de Copérnico, há algumas semelhanças que levam os historiadores a admitir que este teria tomado conhecimento dos estudos de Tusi, através de cópias de trabalhos deste existentes no Vaticano.
O modelo heliocêntrico do Sistema Solar foi defendido, desenvolvido e corrigido por Galileu Galilei e Johannes Kepler. Kepler foi o primeiro a desenvolver um sistema que descrevesse corretamente os detalhes do movimento dos planetas com o Sol no centro. No entanto, Kepler não compreendeu os princípios por detrás das leis que descobriu. Estes princípios foram descobertos mais tarde por Isaac Newton, que mostrou que o movimento dos planetas se podia explicar pela Lei da gravitação universal e pelas leis da dinâmica.
Constatou-se que as estrelas são objetos muito distantes. Com o advento da Espectroscopia provou-se que são similares ao nosso próprio Sol, mas com uma grande variedade de temperaturas, massas e tamanhos. A existência de nossa galáxia, a Via Láctea, como um grupo separado das estrelas foi provada somente no século XX, bem como a existência de galáxias "externas", e logo depois, a expansão do universo dada a recessão da maioria das galáxias de nós. A Cosmologia fez avanços enormes durante o século XX, com o modelo do Big Bang fortemente apoiado pelas evidências fornecidas pela Astronomia e pela Física, tais como a radiação cósmica de micro-ondas de fundo, a Lei de Hubble e a abundância cosmológica dos elementos.
CamposEditar
Por ter um objeto de estudo tão vasto, a astronomia é dividida em muitas áreas. Uma distinção principal é entre a astronomia teórica e a observacional. Observadores usam vários meios para obter dados sobre diversos fenômenos, que são usados pelos teóricos para criar e testar teorias e modelos, para explicar observações e para prever novos resultados. O observador e o teórico não são necessariamente pessoas diferentes e, em vez de dois campos perfeitamente delimitados, há um contínuo de cientistas que põem maior ou menor ênfase na observação ou na teoria.
Os campos de estudo podem também ser categorizados quanto:
ao assunto: em geral de acordo com a região do espaço (ex. Astronomia galáctica) ou aos problemas por resolver (tais como formação das estrelas ou cosmologia).
à forma como se obtém a informação (essencialmente, que faixa do espectro eletromagnético é usada).
Enquanto a primeira divisão se aplica tanto a observadores como também a teóricos, a segunda se aplica a observadores, pois os teóricos tentam usar toda informação disponível, em todos os comprimentos de onda, e observadores frequentemente observam em mais de uma faixa do espectro.
Durante o século XX, o campo da astronomia profissionaOs astrônomos amadores têm contribuído para muitas e importantes descobertas astronômicas. A astronomia é uma das poucas ciências onde os amadores podem desempenhar um papel ativo, especialmente na descoberta e obDurante o século XX, o campo da astronomia profissional foi dividido em dois ramos: a astronomia observacional e a astronomia teórica.[carece de fontes] A primeira está focada na aquisição de dados a partir da observação de objetos celestes, que são então analisados utilizando os princípios básicos da física. Já a segunda é orientada para o desenvolvimento de modelos analíticos que descrevem objetos e fenômenos astronômicos. Os dois campos se complementam, com a astronomia teórica procurando explicar os resultados observacionais, bem com as observações sendo usadas para confirmar (ou não) os resultados teóricos.ervação de fenômenos transitórios[1] [2] .a
A Astronomia não deve ser confundida com a astrologia, sistema de crença que afirma que os assuntos humanos estão correlacionados com as posições dos objetos celestes. Embora os dois campos compartilhem uma origem comum, atualmente eles estão totalmente distintos[3] . foi dividido em dois ramos: a astronomia observacional e a astronomia teórica.[carece de fontes] A primeira está focada na aquisição de dados a partir da observação de objetos celestes, que são então analisados utilizando os princípios básicos da física. Já a segunda é orientada para o desenvolvimento de modelos analíticos que descrevem objetos e fenômenos astronômicos. Os dois campos se complementam, com a astronomia teórica procurando explicar os resultados observacionais, bem com as observações sendo usadas para confirmar (ou não) os resultados teóricos.

UNIVERSO

Salvador Nogueira

Deixando de lado as frases feitas, é realmente difícil saber o que diferencia o ser humano dos outros animais. Fala-se de “inteligência”, mas os etólogos hoje sabem muito bem que esse conceito, além de ser de difícil definição, pode ser percebido de diferentes maneiras em inúmeras espécies animais. Podemos até estar no topo da escala, mas, definitivamente, inteligência não é exclusividade do ser humano. Outro item corriqueiramente utilizado para fazer essa diferenciação é a “autopercepção”, que nada mais é do que a capacidade de saber quem você é, no contexto do mundo, e ter a consciência de que você é você. Gatos, como é fácil de constatar, têm dificuldades com isso. Ao se olharem no espelho, eles pensam estar vendo outro gato, e não seu próprio reflexo. Já os elefantes possuem uma autopercepção mais aguda, e o truque do espelho não os engana. Chimpanzés também não têm problemas com isso, e golfinhos parecem até dar nomes a cada indivíduo – o que provavelmente se qualifica como uma prova contundente de que eles se reconhecem cada um como uma “pessoa”. Além disso, essa atitude demonstra que a capacidade de “comunicação” – outra palavra que, invariavelmente, aparece na lista das candidatas a diferencial do Homo sapiens – não é exclusividade humana. Para o britânico Lewis Wolpert (1929-), biólogo do University College de Londres, a principal diferença, a verdadeira fronteira que separa o ser humano de seus colegas menos intelectualizados do reino animal, é a noção de causa e efeito. Para ele, o ser humano é a única espécie da Terra capaz de entender que certas coisas podemprovocar outras. Mas essa é uma posição extremamente discutível. Muitos etólogos, entre eles Jonathan Balcombe, grande defensor dos direitos dos animais e membro do Physicians Committee for Responsible Medicine [Comitê Clínico para Medicina Responsável], em Washington, nos Estados Unidos, argumentam que há, sim, entre os bichos essa percepção de causa e efeito. Um cão domesticado, por exemplo, com o tempo é capaz de “prever” que, se tiver um comportamento que não é aceito ou esperado, f i cará trancado de castigo e sozinho. É verdade que esse é o tipo de padrão passível de ser obtido pelo mero condicionamento, sem que o animal saiba algo sobre causas e efeitos. Mas, Balcombe lembra que existem comportamentos muito mais sofi sticados, que só não podem confi rmar defi nitivamente essa percepção abstrata avançada em outros animais porque somos incapazes de entrar em suas cabeças e saber o que de fato eles estão pensando. É provável que, no fi m das contas, os humanos não tenham de fato nada que os outros animais também não tenham. Com menos arrogância e mais realismo, a diferença pode estar na quantidade desses fatores – autopercepção, inteligência, comunicação, abstração – em vez de na qualidade. A ciência é a prática que pode ser resumida como a tentativa de desvendar e confirmar por observação os mecanismos que regem a natureza. Ainda assim, Wolpert toca num ponto crucial dessa constelação de fatores. Pois a noção de que o mundo é composto de causas e efeitos foi o passaporte da humanidade para a ciência. Defi nitivamente, ainda que o ser humano não tenha nenhuma característica que outros animais não tenham, em maior ou menor grau, a atitude de fazer ciência é algo próprio e exclusivo do ser humano

f 

 TIPOS DE ECLIPSES

O Sol é uma fonte luminosa extensa. Tanto a Lua como a Terra projetam no espaço uma sombra em forma de um cone, cuja base é o próprio corpo, e uma penumbra. O cone de sombra situa-se interno à penumbra. Por definição, o cone umbral não recebe luz solar alguma e a penumbra não recebe luz de todos os pontos do disco solar. No entanto, para a Terra, que possui uma camada de ar ao seu redor, os limites do cone de sombra e da penumbra não são bem determinados. A luz do Sol é espalhada quando atravessa a atmosfera terrestre. O mesmo não ocorre para a Lua. Os eclipses lunares somente ocorrem quando a Lua está na fase cheia. Num eclipse da Lua, ela percorre a penumbra e/ou a sombra da Terra. Apenas poderão ser observados do hemisfério da Terra onde é noite. Há três tipos de eclipse da Lua: o total, o parcial e o penumbral. O eclipse lunar total acontece quando a Lua é totalmente obscurecida pelo cone de sombra da Terra, o parcial quando somente parte da Lua é obscurecida por esse cone e o penumbral quando a Lua percorre apenas a zona da penumbra terrestre (é o menos pronunciável dos três). Na ocasião de um eclipse total ou parcial, a Lua percorre a região de penumbra antes e depois de atravessar o cone umbral da Terra.

A hipótese mais aceita atualmente sobre o surgimento da Lua

 

Os astrônomos passaram séculos perdidos entre essas três

idéias. Isso até 1975, quando os americanos William Hartmann

e Donald Davis, revivendo noções primeiro aventadas nos anos 1940,

mas nunca levadas realmente a sério, apresentaram a teoria que

assumiria a liderança entre as candidatas à formação lunar. Já

munidos das informações obtidas pelos astronautas que foram

até a Lua, que revelaram detalhes sobre o interior lunar e sua

baixa quantidade de ferro (comparada ao que há no núcleo dos

planetas rochosos), eles sugeriram que o sistema Terra-Lua tenha

sido fruto de um gigantesco acidente de trânsito cósmico.

Durante os estágios finais de formação da Terra, há 4,6 bilhões de

anos, um objeto do tamanho de um planeta como Marte (que tem

cerca de 6.800 km de diâmetro) teria se chocado com o nosso, espalhando

material dos dois corpos em órbita. Em pouco tempo, essa

massa ejetada teria se reorganizado para produzir a Lua. Como a

Terra já estava quase “pronta” no momento da colisão, o impacto

não teria sido capaz de arrancar uma parte do ferro contido em seu

núcleo, explicando o porquê da pequena quantidade dessa substância

e a baixa densidade média da Lua, apesar dos diversos parentescos

em outros elementos compartilhados pelos dois astros.

Hoje, essa é a hipótese mais aceita para o surgimento da Lua, embora

ainda faltem provas definitivas de que as coisas de fato aconteceram

deste modo. Mas, mesmo que a teoria não esteja 100% comprovada,

ela nos fala de um perigo bem real – talvez o maior fator transformador

da história da vida na Terra não tenha sido a presença constante

do Sol ou da Lua, mas, o potencial de devastação causado pelos impactos

siderais. De tempos em tempos, eles acontecem, e, ao menos

até agora, não há nada que se possa fazer

para evitá-los. Não seria exagero dizer que

esses acidentes provocaram extinções em

massa mais de uma vez na Terra e deram

verdadeiros “pitacos” na seta de evolução,

culminando no surgimento do homem. Gostemos

ou não, estamos aqui somente porque

um bólido espacial acabou com a “festa”

dos dinossauros, 65 milhões de anos atrás.

A ameaça que vem do espaço

Embora a Lua tenha sido a primeira a denunciar a ocorrência de

violentos choques cósmicos de tempos em tempos, a ficha demorou

a cair entre os astrônomos. É um longo e tortuoso caminho o que

liga o céu imutável, perfeito e ordenado de Aristóteles a um que

gera tantas e tão radicais mudanças. Sem falar que, durante muito

tempo, foram poucas as evidências de que houvesse algum perigo.

Até que a tecnologia pudesse dominar a pesquisa astronômica, era

muito raro ver algo no céu que contrariasse os preceitos aristotélicos.

Um desses eventos eram as “novas” (em geral, estrelas distantes

que esgotaram seu combustível e explodiram, tornando-se muito

brilhantes), como observadas nos séculos 16 e 17, que pareciam

inofensivas o bastante para não gerar reais preocupações. Outro

tipo de aparição, mais comum e, paradoxalmente, mais assustador,

era o dos

 

cometas.

Hoje sabemos que esses objetos são agregados de poeira e gelo

que giram ao redor do Sol, na maior parte das vezes em órbitas

bastante alongadas. Conforme se aproximam mais da estrela, o

gelo que os compõe começa a sublimar (converter-se de sólido

em gás) e forma a chamada coma (ou cabeleira) que envolve o

astro, juntamente com a cauda. Esse fenômeno torna o objeto

bastante luminoso, justo nos momentos em que ele passa pelo

Sistema Solar Interior, onde a Terra está localizada. Não é à toa

Ilustração do impacto que teria destruído

os dinossauros há 65 milhões de anos.

Don Davis/Nasa. www.nasa.gov/

 

Cometa:

corpo de gelo e

rocha orbitando

o Sol em uma

longa e excêntrica

órbita que os cometas costumam dar belos

shows no firmamento quando aparecem.

Por conta de sua aparente imprevisibilidade

(resultante, na maioria dos casos,

do tamanho de suas órbitas, que podem

consumir até milhares de anos antes que o

objeto dê uma volta completa), os cometas

sempre trouxeram terror e apreensão

entre os humanos – acabaram associados

à morte de reis e lideranças, a tal ponto de

induzir monarcas a abdicarem do trono em favor de outra pessoa,

apenas para matá-la e cumprir a profecia, voltando ao poder assim

que o astro desaparecesse dos céus.

O cometa Halley, com suas aparições separadas por 76 anos, acabou

se tornando o gatilho para um grande número de mortes ao

longo da história. No ano 240, Gêngis Khan ordenou a morte

de cerca de 1 milhão de pessoas para afastar o “mau agouro” da

passagem do Halley. O cometa também foi “responsabilizado”,

ao longo da história, por várias coisas, como a peste bubônica e

o incêndio de Londres.

Os cometas não tinham espaço no céu

imutável aristotélico, o que fez esse pensador

grego atribuir a eles uma natureza

atmosférica, não celeste. Mas, em 1577 o

astrônomo dinamarquês Tycho Brahe derrubou

essa idéia, ao constatar, por meio de

cálculos, triangulações e observações, que

um cometa aparecido naquele ano estava

claramente mais distante da Terra que a

Lua – portanto acima da esfera sublunar.

Ainda assim, pouco se sabia sobre a natureza

desses objetos. Foi lento o progresso no sentido

de decifrar os mistérios e perceber que, de fato, os cometas poderiam

ser uma ameaça à Terra, caso se chocassem com o planeta.

 Núcleo do cometa Wild-2, em imagem

enviada pela sonda Stardust.

Nasa. www.nasa.gov/

Imagem do cometa Halley obtida em observações

aéreas em 1986.

Nasa. www.nasa.gov/

O primeiro aviso nesse sentido veio do astrônomo britânico

Edmond Halley (1656-1742), que com justiça emprestou seu

nome ao famoso cometa, depois de tê-lo identificado e previsto

sua periodicidade de 76 anos. Em 1694, Halley sugeriu que impactos

de cometas devem ter causado catástrofes globais no passado.

Um século mais tarde, o matemático e astrônomo francês

Pierre Simon de Laplace (1749-1827) faria a mesma sugestão.

Com o passar do tempo, os astrônomos foram dividindo os cometas

em três categorias. Os de curto período completam uma volta

ao redor do Sol em no máximo 20 anos, raramente ultrapassando

muito além da órbita de Júpiter em sua posição mais afastada. Os

de médio período levam de 20 anos a 200 anos para concluir sua

rota ao redor do Sol e normalmente vêm de uma faixa de objetos

localizada além de Netuno, denominada cinturão de Kuiper (em

homenagem ao astrônomo holandês Gerard Kuiper (1905-1973),

que previu teoricamente sua existência em 1951). Finalmente, os

de longo período levam mais de 200 anos para completar uma

volta e costumam vir da chamada nuvem de Oort (batizada depois

de ter sido sugerida pelo também holandês Jan Hendrik Oort

(1900-1992), em 1950), região muito mais distante que o cinturão

de Kuiper, 100 mil vezes mais afastada do Sol que a Terra.

Esses objetos mais remotos, em sua maioria, foram vistos apenas

uma vez na história registrada da astronomia, dada a lentidão

com que voltam a reaparecer.

O mais dramático de tudo isso, no entanto, é que, em suas órbitas

elípticas, os cometas muitas vezes cruzam o caminho da Terra

quando estão se aproximando do Sol – o que torna uma colisão

possível, caso o planeta esteja no lugar errado, na hora errada. Na

verdade, os cientistas hoje chegam a especular que no passado

remoto a colisão com cometas tenha sido benéfica à Terra, abastecendo-

a com a vasta quantidade de água que depois repousaria

em seus oceanos. De toda forma, atualmente um impacto seria

absolutamente catastrófico, podendo até mesmo ocasionar a extinção

repentina da espécie humana.

 

TAMANHO DO SOL E PLANETAS

p

O Sistema Solar

João Batista Garcia Canalle (Uerj).

 

A teoria mais aceita atualmente sugere que o

Sistema Solar surgiu de uma nuvem primitiva

de gás e poeira ao redor de 4,6 bilhões de

anos atrás. A gravidade fez com que esta névoa

sofresse uma contração, num processo

que durou dezenas de milhões de anos, até

que a maior parte de sua massa se concentrasse

no centro do sistema. Devido à turbulência,

o núcleo original começou a girar

com velocidade cada vez maior, dando ao

restante da névoa a forma de um disco.

A temperatura do centro da nuvem foi aumentando à medida que

ela se comprimia, até se tornar quente o suficiente para que o Sol

começasse a brilhar. Enquanto isso, a periferia do disco foi se esfriando

permitindo que a matéria se solidificasse.

À medida que as partículas colidiam, elas foram se unindo, formando

corpos cada vez maiores. Esses corpos são atualmente os

oito planetas que giram em torno do Sol.

Essa teoria foi proposta, primeiramente, pelo francês Pierre Simon de

Laplace e vem sofrendo aperfeiçoamentos desde então.